
Lecture note #3 Statistical Inference

One sample model. One sample model has no explanatory variable (although there could
have been one such as sex or age), and it is determined by population parameters. We then
assume that y1, . . . , yn are independent with

yi ∼ N(µ, σ2), i = 1, . . . , n

All observations are assumed to be sampled from the same distribution. Equivalently, we may
write

yi ∼ µ+ ei i = 1, . . . , n

where e1, . . . , en are independent and N(0, σ2)-distributed. The parameters are µ and σ2, where
µ is the expected value (or population mean) and σ is the average deviation from this value (or
the population standard deviation).

Estimate of parameter. Consider one sample model, and assume that y1, . . . , yn are indepen-
dent and distributed as N(µ, σ2). The only parameter of interest is the common mean µ, which
is estimated by

µ̂ = ȳ =

∑n
i=1 yi
n

∼ N(µ, σ2/n)

The estimate µ̂ is unbiased (that is, it “hits” the correct value on average, if we repeated the
experiment many times) and consistent (that is, it becomes more precise as the sample size
increases since the variance decreases). Furthermore, it has a normal distribution, so we know
how to calculate probability concerning the estimate.

Standard error (SE). The estimate σ̂ of standard deviation σ is given by the sample standard
deviation s; i.e., the square root of

s2 =

∑n
i=1(yi − ȳ)2

n− 1

The statistical model results in the estimate µ̂ of parameter. The standard deviation of the
estimate is called the standard error (SE), and given by

SE(µ̂) = s
√

1/n

The constant
√

1/n depends on the model and the data structure, but not on the observed

data. Thus, the value
√
1/n could be computed even before the experiment was carried out. In

particular, it decreases when the sample size n increases.

Example: Crab weights. For the crab weight data we get the sample mean ȳ and the sample
standard deviation s by

ȳ = 12.76, s = 2.25

Hence, the estimate µ̂ of mean parameter and the estimate σ̂ of standard deviation become

µ̂ = 12.76, σ̂ = 2.25

And we obtain the standard error of the mean parameter estimate by

SE(µ̂) = (2.25)
√

1/162 = 0.177
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Standardization and test statistic. Remember that if y1, . . . , yn are independent and
N(µ, σ2)-distributed, then the sample mean is normally distributed by the central limit the-
orem. Furthermore, by standardization (the Z-score) we get

Z =
ȳ − µ

σ/
√
n
∼ N(0, 1)

However, the value of σ is unknown, so we cannot compute the Z-score. If we replace σ with its
estimate s and consider instead

T =
ȳ − µ

s/
√
n

then extra uncertainty is introduced through the estimate s of σ, and the distribution is changed.
T is called a test statistic.

Distribution of test statistic. Intuitively we expect the following properties to hold for the
distribution of test statistic

T =
ȳ − µ

s/
√
n
=

√
n(ȳ − µ)

s

� Symmetry. The distribution of T is symmetric around zero, so positive and negative
values are equally likely.

� Dispersion. Values far from zero are more likely for T than for Z due to the extra
uncertainty. This implies that the interval should be wider for the probability to be
retained at 0.95.

� Large samples. When the sample size increases then s is a more precise estimate of
σ, and the distribution of T more closely resembles the standard normal distribution. In
particular, the distribution of T should approach N(0, 1) as n approaches infinity.

Student t distribution. It can be proven that these properties are indeed true. The distri-
bution of T is called the t-distribution with n− 1 degrees of freedom and is denoted by tn−1, so
we write

T =

√
n(ȳ − µ)

s
∼ tn−1

The t-distribution is often called Student’s t distribution because the distribution result was
first published in 1908 under the pseudonym “Student.” The author was a chemist, William
S. Gosset, employed at the Guinness brewery in Dublin. Gosset worked with what we would
today call quality control of the brewing process. Due to time constraints, small samples of 4
or 6 were used, and Gosset realized that the normal distribution was not the proper one to use.
The Guinness brewery only let Gosset publish his results under pseudonym.

Density functions are compared for the t-distribution with r = 1 degree of freedom (solid) and
r = 4 degrees of freedom (dashed) as well as for N(0, 1) (dotted). The probability of an interval
is the area under the density curve, illustrated in the figure below.
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Critical values for t distribution. The graph below shows the density function of the t10-
distribution. The 95% quantile is 1.812, as illustrated by the gray region which has area 0.95.
The 97.5% quantile is 2.228, illustrated by the dashed region with area 0.975. These quantiles
are called critical values of level 0.05 and 0.025, respectively. The level α corresponds to the
right tail probability of the (1− α)-quantile, and the critical value of level α is denoted by tα,r
with r degrees of freedom.

The t distribution table. The following table shows the 95% and 97.5% quantiles for the
t-distribution for a few selected degrees of freedom, denoted by tr as illustrated for different
degrees r of freedom. Equivalently they present the critical values t0.05,r of level 0.05 (the top
row) and t0.025,r of level 0.025 (the bottom row). For data analyses where other degrees of
freedom are in order, you should look up the relevant quantiles/critical values in a statistical
table, called the t-distribution table.

Confidence interval. In one sample model let y1, . . . , yn be independent and N(µ, σ2)-
distributed. The estimate of parameters µ and σ2 are given by

µ̂ = ȳ =

∑n
i=1 yi
n

, σ̂2 = s2 =

∑n
i=1(yi − ȳ)2

n− 1

and hence the standard error of the mean parameter estimate µ̂ is given by

SE(µ̂) = s
√

1/n
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By standardization we obtain

T =
ȳ − µ

s/
√
n
=

µ̂− µ

SE(µ̂)
∼ tn−1

If we denote the critical value in the t-distribution by tα/2,n−1 then we get

P

(
−tα/2,n−1 <

µ̂− µ

SE(µ̂)
< tα/2,n−1

)
= 1− α

If we move around terms in order to isolate µ, we can derive

1− α = P
(
− (tα/2,n−1)SE(µ̂) < µ̂− µ < (tα/2,n−1)SE(µ̂)

)
= P

(
µ̂− (tα/2,n−1)SE(µ̂) < µ < µ̂+ (tα/2,n−1)SE(µ̂)

)
Therefore, the interval (

µ̂− (tα/2,n−1)SE(µ̂), µ̂+ (tα/2,n−1)SE(µ̂)
)

includes the true parameter value µ with a probability of (1 − α)%. The interval is called a
(1− α)% confidence interval for µ.

Example: Crab weights. The interesting parameter for the crabs data is the population mean
µ. Choose (1 − α) = 0.95. Then the critical value with level α/2 = 0.025 in the t-distribution
with (n− 1) = 161 degrees of freedom becomes 1.975. From the estimates and standard error

µ̂ = 12.76, s = 2.25, SE(µ̂) = (2.25)
√
1/162 = 0.177

we compute the 95% confidence interval for µ by

12.76± (1.975)(0.177) = (12.41, 13.11)

If n is large then the critical value will be close to 1.96 and it does not matter much which of
the critical values, 1.975 or 1.96, is used. Moreover, s will be a precise estimate of σ when n is
large, so it will be almost as if s was known. For small samples there is a difference, though,
and the critical value t0.025,n−1 is more correct to use.

Find the estimate and the standard error for the variable “wgt.”

databox = read.csv(file.choose())

attach(databox)

est = mean(wgt)

se = sd(wgt) * sqrt(1/length(wgt))

Quantiles for the t-distribution are computed with the qt() function with degrees of freedom.
For example, the 95% and the 97.5% quantiles with n− 1 degrees of freedom are

qt(0.95, df=length(wgt)-1)

qt(0.975, df=length(wgt)-1)
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The one sample model can be handled with the lm() function, acknowledging that there is only
“one constant” parameter.

model = lm(wgt ~ 1)

summary(model)

confint(model, level=0.90)

confint(model, level=0.95)

Alternatively (and more easily in some cases) we can use the t.test() function:

t.test(wgt)

t.test(wgt, conf.level=0.90)

The output from t.test() is mainly concerned with t-test and will be explained later. But the
estimate and the confidence interval are also produced. The confidence level can be specified
with the option “conf.level=0.90.”

Confidence interval in general. If we repeated the experiment or data collection procedure
many times and computed the interval

µ̂± (t0.025,n−1)SE(µ̂)

then 95% of those intervals would include the true value of µ. We have drawn 50 samples of size
10 with µ = 0, and for each of these 50 samples we have computed and plotted the confidence
interval. The true value µ = 0 is included in the confidence interval 95% of the time. The 75%
confidence interval for µ is given by

µ̂± (t0.125,n−1)SE(µ̂)

The 75% confidence intervals are more narrow such that the true value is excluded more often,
with a probability of 25% rather than 5%. This reflects that our confidence in the 75% confidence
interval is smaller compared to the 95% confidence interval.

Confidence intervals for 50 simulated data generated for the true value µ = 0. Each shows 95%
confidence intervals of size n = 10, 75% confidence intervals of size n = 10, and 95% confidence
intervals of size n = 40, respectively.

Confidence interval in general. The true value µ is either inside the interval or it is not,
but we will never know. We can, however, interpret the values in the confidence interval for the
mean parameter µ by which it is reasonable to believe that they could have generated the data.
If we use 95% confidence intervals,
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1. the probability of observing data for which the corresponding confidence interval includes
µ is 95%;

2. the probability of observing data for which the corresponding confidence interval does not
include µ is 5%.

As a standard phrase we may say, “the 95% confidence interval includes those values that are
in agreement with the data on the 95% confidence level.”

Example: Hormone concentration study. As part of a larger cattle study, the effect of a
particular type of feed on the concentration of a certain hormone was investigated. Nine cows
were given the feed for a period, and the hormone concentration was measured initially and at
the end of the period. The purpose of the experiment was to examine if the feed changes the
hormone concentration.

We obtain the sample mean 13.778 and the sample standard deviation 15.238. Thus, the differ-
ence is positive for eight of the nine cows. But is it strong enough for us to conclude that the
feed affects the concentration?

Hypothesis test. Initially, we may examine if the concentrations are generally increasing or
decreasing from the start to the end of the experiment. The hormone concentration increases
for eight of the nine cows, for some cows quite substantially, for some cows only a little bit.
There is certainly a tendency, but is it strong enough for us to conclude that the feed affects
the concentration? Hypothesis tests are used to investigate if the observed data contradict
or support specific assumptions. In short, a hypothesis test evaluates how likely the observed
data is if the assumptions under investigation are true. If the data is very unlikely to occur
given the assumptions, then we do not believe in the assumptions. Hypothesis tests form the
core of statistical inference, together with parameter estimation and confidence intervals, and
involve important new concepts like null and alternative hypotheses, test statistics, and
p-values.

In many cases, the interest is in identifying certain effects. This situation corresponds to the
alternative hypothesis, whereas the null hypothesis corresponds to the situation of “no
effect” or “no association.” This may all seem a little counterintuitive, but the machinery works
like this: with a hypothesis test we reject null hypothesis if the data and the hypothesis are
in contradiction; that is, if the model under the null hypothesis fits poorly to the data. Hence,
if we reject the null hypothesis then we believe in the alternative, which states that there is an
effect. In principle we never accept the null hypothesis. If we fail to reject the null hypothesis
we say that the data does not provide evidence against it. This is not a proof that the null
hypothesis is true, but it only indicates that the model under the alternative hypothesis does
not describe the data significantly better than the one under the null hypothesis.

Example: Hormone concentration study. We consider the differences of hormone concen-
tration, denoted by d1, . . . , d9, during the period and assume that they are independent. Then
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µ is the expected change in hormone concentration for a random cow, or the average change in
the population, and µ = 0 corresponds to no effect of the feed on the hormone concentration.
The mean of the nine differences is 13.78, and we would like to know if this reflects a real effect
or if it might be due to chance. Here we are interested in the null hypothesis

H0 : µ = 0

corresponding to “no difference” between start and end measurements in the population.

Example: Hormone concentration study. Now, the average difference 13.78 is our best
“guess” for µ, so it seems reasonable to believe in the null hypothesis if it is “close to zero” and
not believe in the null hypothesis if it is “far away from zero.” So we might ask: If µ is really
zero (if the hypothesis is true), then how likely is it to get an estimate that is as far or even
further away from zero than the 13.78 that we actually got? A t-test can answer that question.
We can calculate the test statistic by

Tobs =
µ̂− 0

SE(µ̂)
=

13.78

5.08
= 2.71

The numerator is just the difference between the estimate µ̂ and the value of µ if the null
hypothesis H0 is true. We then divide it by the standard error

SE(µ̂) = (15.24)
√
1/9 = 5.08

Mechanism of rejection. If µ = 0 (the null hypothesis H0 is true) then Tobs is an observation
from the t8 distribution (the number of degrees of freedom is n−1; here 9−1 = 8). In particular,
we can compute the probability of getting a test statistic T which is at least as extreme as 2.71
by

P (|T | ≥ 2.71) = (2)P (T ≥ 2.71) = (2)(0.013) = 0.026

Here T is a t8-distributed random variable and the second equality follows from the symmetry
of the t-distribution. This probability is called the p-value. If the p-value is small then the
observed value Tobs = 2.71 is extreme, so we do not believe in the null hypothesis H0 and reject
it. If, on the other hand, the p-value is large then the observed value Tobs = 2.71 is quite likely,
so we cannot reject the hypothesis. In this case the p-value is only 2.6%, so the observed test
statistic of 2.71 is unlikely if the true value of µ is zero. Hence, we reject the null hypothesis.

Usually we use a significance level of 5%; that is, we reject the hypothesis if the p-value is
less than 0.05 and fail to reject it otherwise. This means that the null hypothesis is rejected if
|Tobs| is larger than or equal to the critical value t0.025,n−1 with level 0.025, which is 2.31 in this
case. Hence, an observed test statistic Tobs outside (−2.31, 2.31) leads to rejection of the null
hypothesis.
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Example: Hormone concentration study. We already used the t.test() function for
computation of estimates and confidence intervals for one sample model. As the name suggests,
the function also carries out complete t-tests.

databox = read.csv(file.choose())

attach(databox)

t.test(difference)

We recognize the estimate, the confidence interval, the t-test statistic, and the p-value from the
example. Notice that the default “alternative” hypothesis is that the true mean is not equal to
zero. If we are interested in the alternative hypothesis that the mean is greater than zero, then
we need to specify it in the call to t.test().

t.test(difference, alternative="greater")

Concepts of hypothesis test.

� Null hypothesis. A null hypothesis is a simplification of the statistical model and is
as such always related to the statistical model. Hence, no null hypothesis exists without
a corresponding statistical model. A null hypothesis typically describes the situation of
“no effect” or “no relationship,” such that rejection of the null hypothesis corresponds to
evidence of an effect or relationship.

� Alternative hypothesis. There is a corresponding alternative hypothesis to every null
hypothesis. The alternative hypothesis describes what is true if the null hypothesis is false.
Usually the alternative hypothesis is simply the complement of the null hypothesis, called
two-sided. If the alternative is one-sided then the one side of values expressed in the
alternative is considered as evidence against the null hypothesis.

� Test statistic. A test statistic is a function of the data that measures the discrepancy
between the data and the null hypothesis—with certain values contradicting the hypoth-
esis and others supporting it. Values contradicting the hypothesis are called critical or
extreme.

� p-value. The test statistic is translated to a p-value: the probability of observing data
which fit as bad or even worse than the observed data if the null hypothesis is true. A
small p-value indicates that the observed data are unusual if the null hypothesis is true,
hence that the hypothesis is false.

� Rejection. The hypothesis is rejected if the p-value is small; namely, below (or equal to)
the significance level, which is often taken to be 0.05. With statistics we can at best
reject the null hypothesis with strong certainty, but we can never confirm the hypothesis.
If we fail to reject the null hypothesis, then the only valid conclusion is that the data
do not contradict the null hypothesis. A large p-value shows that the data are in fine
accordance with the null hypothesis, but not that it is true.
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� Quantification of effects. Having established a significant effect by a hypothesis test, it
is of great importance to quantify the effect. For example, how much larger is the expected
hormone concentration after a period of treatment? Moreover, what is the precision of the
estimates in terms of standard errors and/or confidence intervals?

t-test in general. Consider the null hypothesis

H0 : µ = µ0

with a null value µ0. Data for which the estimate µ̂ is close to µ0 support the null hypothesis
H0, whereas data for which the estimate µ̂ is far from µ0 contradict the null hypothesis; so it
seems reasonable to consider the deviation.

Tobs =
µ̂− µ0

SE(µ̂)

can be used as a test statistic. An extreme value of Tobs is an indication that the data are
unusual under the null hypothesis, and the p-value measures how extreme Tobs is compared to
the tn−1-distribution.

If the alternative is two-sided, HA : µ ̸= µ0, then values of Tobs that are far from zero (both
small and large values) are critical. Therefore, the p-value is

P (|T | ≥ |Tobs|) = (2)P (T ≥ Tobs)

where T follows the tn−1-distribution. If the alternative is one-sided, HA : µ > µ0, then large
values of Tobs are critical, whereas negative values of Tobs are considered in favor of the null
hypothesis rather than evidence against it. Hence the p-value is P (T ≥ Tobs). Similarly if the
alternative is one-sided, HA : µ < µ0, then only small values of Tobs are critical, so the p-value
is P (T ≤ Tobs). The significance level is usually denoted α, and it should be selected before the
analysis. Tests are often carried out on the 5% level corresponding to α = 0.05 (but α = 0.01
and α = 0.10 are not unusual).

Critical region. For a hypothesis with a two-sided alternative, the hypothesis is thus rejected
on the 5% significance level if |Tobs| is numerically larger than or equal to the critical value with
level 0.025 in the tn−1-distribution; that is, if |Tobs| ≥ t0.025,n−1. With a one-sided alternative,
HA : µ > µ0, the null hypothesis H0 is rejected if Tobs ≥ t0.05,n−1. Otherwise, we fail to
reject the hypothesis, and the model under the alternative hypothesis does not describe the
data significantly better than the model under the null hypothesis. Similarly with the choice of
one-sided alternative HA : µ < µ0, the null hypothesis H0 is rejected if Tobs ≤ −t0.05,n−1. In
order to evaluate if the null hypothesis should be rejected or not, it is thus enough to compare
Tobs or |Tobs| to a certain critical value. But we recommend that the p-value is always reported.

Example: Production control. A dairy company bought a new machine for filling milk into
cartons and wants to make sure that the machine is calibrated correctly. The aim is an average
weight of 1070 grams per carton (including the carton). A sample of 100 cartons with milk is
chosen at random from the production line and each carton is weighed. It is assumed that the
weights are independent and N(µ, σ2)-distributed. The relevant hypothesis is H0 : µ = 1070. It
turned out that

ȳ = 1072.9grams, s = 15.8grams,

Page 9 September 30, 2024



Lecture note #3 Statistical Inference

and therefore, that SE(µ̂) = 1.58 and the t-test statistic becomes

Tobs =
µ̂− 1070

SE(µ̂)
=

2.9

1.58
= 1.83

The corresponding p-value is

P (|T | ≥ 1.83) = (2)P (T ≥ 1.83) = 0.07

where T follows t99-distribution. Thus, we fail to reject the hypothesis on the 5% significance
level, but due to the low p-value we conclude nevertheless that there is a slight indication that
the machine is calibrated incorrectly. Thus, the result has some significance since p-value is
between 0.05 and 0.1.

Type I and type II errors. Four scenarios are possible as we carry out a hypothesis test: the
null hypothesis is either true or false, and it is either rejected or not rejected. The conclusion is
correct whenever we reject a false hypothesis or do not reject a true hypothesis. Rejection of a
true hypothesis is called a type I error, whereas a type II error refers to not rejecting a false
hypothesis; see the chart below.

We use a 5% significance level. Then we reject the hypothesis if p-value ≤ 0.05. This means
that if the hypothesis is true, then we will reject it with a probability of 5%. In other words:
The probability of committing a type I error is the significance level α = 0.05.

The situation is analogous to the situation of a medical test: Assume for example that the
concentration of some substance in the blood is measured in order to detect cancer. (Thus, the
claim is that the patient has cancer, and the null hypothesis is that he or she is cancer-free.) If
the concentration is larger than a certain threshold, then the “alarm goes off” and the patient
is sent for further investigation. (That is, to reject the null hypothesis, and conclude that the
patient has cancer.) But how large should the threshold be? If it is large, then some patients
will not be classified as sick (failed to reject the null hypothesis) although they are sick due to
cancer (type II error). On the other hand, if the threshold is low, then patients will be classified
as sick (reject the null hypothesis) although they are not (type I error).

For a general significance level α, the probability of committing a type I error is α. Hence, by
adjusting the significance level we can change the probability β of rejecting a true hypothesis.
This is not for free, however. If we decrease α we make it harder to reject a hypothesis. Hence
we will accept more false hypotheses, so the rate of type II errors will increase. The probability
that a false hypothesis is rejected is called the power of the test, and it is given by (1 − β).
We would like the test to have large power (1 − β) and at the same time a small significance
level α, but these two goals contradict each other so there is a trade-off. As mentioned already,
α = 0.05 is the typical choice. Sometimes, however, the scientist wants to “make sure” that
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false hypotheses are really detected; then α can be increased to 0.10, say. On the other hand,
it is sometimes more important to “make sure” that rejection expresses real effects; then α can
be decreased to 0.01.

t-tests and confidence intervals. The null hypothesis H0 : µ = µ0 is rejected on significance
level α against the alternative HA : µ ̸= µ0 if and only if the null value µ0 is not included in
the (1 − α)% confidence interval. This relationship explains the formulation about confidence
intervals; namely, that a confidence interval includes the values that are in accordance with
the data. This now has a precise meaning in terms of hypothesis tests. If the only aim of
the analysis is to conclude whether a hypothesis should be rejected or not at a certain level α,
then we get that information from either the t-test or the confidence interval. On the other
hand, they provide extra information on slightly different matters. The t-test provides a p-value
explaining how extreme the observed data are if the hypothesis is true, whereas the confidence
interval gives us the values of µ that are in agreement with the data.

Example: Heart rate reductions. A researcher is interested in how a new class of drug
treating a patient actually affects the patient’s heart rate reduction. The pairs of heart rate
reduction of 40 participants under the standard drug and after taking the new drug are measured.
The data set of heart rate reductions is prepared in a text file format.

databox <- read.csv(file.choose(), header=T)

attach(databox)

The paired sample test can be done by the t.test() command with the option “paired=T.”
Suppose that we want to test whether the true means of heart rate reductions with the new
drug are higher. Then the t.test command can be used as follows.

t.test(StdDrug, NewDrug, alternative="less", paired=T)
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