Calculus I > Precalculus Review

Trigonometric functions on a coordinate system

In a coordinate system an angle $ \theta$ with the terminal side $ OP$ (a radian on the unit circle) starts from the first quadrant (i.e., the positive $ x$- and $ y$-axis), and moves counterclockwise from the point $ (1,0)$ when $ \theta > 0$.

\includegraphics{lec09e.ps}

The angle $ \theta$ moves clockwise when $ \theta < 0$.

\includegraphics{lec09f.ps}

In the setting of coordinate system, the cosine and the sine functions are now defined for every positive and negative angle $ \theta$ as

$\displaystyle \cos\theta =$   the $ x$-coordinate of $ P$; $\displaystyle \quad\quad
\sin\theta =$   the $ y$-coordinate of $ P$. $\displaystyle $

In other words the point $ P$ on the unit circle with the radian $ \theta$ is given by $ P = (\cos\theta,\: \sin\theta)$. The other trigonometric functions follows as they are defined in Trigonometric functions.


© TTU Mathematics