Calculus I > Precalculus Review

Trigonometric formulas

Double-angle and half-angle formulas. By letting $ v = u$ in Trigonometric additions and subtractions we can derive the double-angle formulas:

$\displaystyle \cos 2u = \cos^2 u - \sin^2 u
= 1 - 2 \sin^2 u = 2 \cos^2 u - 1$    and $\displaystyle \sin 2u = 2 \sin u \cos u.
$

By letting $ u = \dfrac{v}{2}$ in the double-angle formulas, we can verify the following half-angle formulas:

$\displaystyle \sin\dfrac{v}{2} = \pm \sqrt{\dfrac{1 - \cos v}{2}};
\quad \cos\dfrac{v}{2} = \pm \sqrt{\dfrac{1 + \cos v}{2}},
$

and

$\displaystyle \tan\dfrac{v}{2} = \pm \sqrt{\dfrac{1 - \cos v}{1 + \cos v}}
= \dfrac{1 - \cos v}{\sin v}
= \dfrac{\sin v}{1 + \cos v}.
$

Sum-to-product formulas. By letting $ u = \dfrac{\alpha + \beta}{2}$ and $ v = \dfrac{\alpha - \beta}{2}$ in Trigonometric additions and subtractions, we can verify the following formulas:

\begin{displaymath}\begin{array}{ll}
\sin\alpha + \sin\beta =
2 \sin\dfrac{\al...
...{\alpha + \beta}{2} \sin\dfrac{\alpha - \beta}{2}.
\end{array}\end{displaymath}

Sum of trigonometric functions having common period. Let $ \theta = \tan^{-1}(b/a)$ if $ a \ge 0$ (we set $ \theta = \pi + \tan^{-1}(b/a)$ if $ a < 0$). Then we have $ \cos\theta = \dfrac{a}{\sqrt{a^2 + b^2}}$ and $ \sin\theta = \dfrac{b}{\sqrt{a^2 + b^2}}$, and obtain

$\displaystyle a \cos\omega x + b \sin\omega x
= \sqrt{a^2 + b^2}[\cos\omega x ...
...theta
+ \sin\omega x \sin\theta]
= \sqrt{a^2 + b^2}\cos(\omega x - \theta).
$


© TTU Mathematics