e-Mathematics > Matrix Algebra

Linear Independence, Basis

Linear independence. Let $ \mathbf{v}_1, \ldots, \mathbf{v}_k$ be column vectors in  $ \mathbb{R}^n$. Then we have the homogeneous equation

$\displaystyle x_1 \mathbf{v}_{1} + \cdots + x_k \mathbf{v}_{k} = \mathbf{0}
$

in the form of vector equation. If the above homogeneous equation has only the trivial solution

$\displaystyle x_1 = \cdots = x_k = 0
$

then the vectors  $ \mathbf{v}_1, \ldots, \mathbf{v}_k$ are said to be linearly independent; otherwise, they are linearly dependent.

EXAMPLES 2. Determine whether the vectors $ \mathbf{v}_1$, $ \mathbf{v}_2$ and $ \mathbf{v}_3$ are linearly independent or not in each of the following.

  1. $ \mathbf{v}_1 = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}$, $ \mathbf{v}_2 = \begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}$, and $ \mathbf{v}_3 = \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}$
  2. $ \mathbf{v}_1 = \begin{bmatrix}
0 \\
1 \\
5
\end{bmatrix}$, $ \mathbf{v}_2 = \begin{bmatrix}
1 \\
2 \\
8
\end{bmatrix}$, and $ \mathbf{v}_3 = \begin{bmatrix}
4 \\
-1 \\
0
\end{bmatrix}$

Basis. Suppose that a subspace

$\displaystyle V = \mathrm{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}
$

is spanned by $ \mathbf{v}_1, \ldots, \mathbf{v}_k$, and that $ \mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent. Then the collection

$\displaystyle \mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}
$

of vectors is called a basis for the subspace $ V$, and the subspace $ V$ is said to be k-dimensional. In short we write

$\displaystyle \dim V = k.
$

As a special case we posit $ \dim\{\mathbf{0}\} = 0$. That is, the zero subspace $\{\mathbf{0}\}$ is 0-dimensional.

Representation theorem. Let $ \mathbf{v}_1, \ldots, \mathbf{v}_k$ be a basis for the vector space $ V$. Then for each $\mathbf{x}\in V$ (that is, for each $ \mathbf{x}$ in $ V$) there exists a unique representation

$\displaystyle \mathbf{x} = c_1 \mathbf{v}_{1} + \cdots + c_k \mathbf{v}_{k}
$

with scalars $c_1,\ldots,c_k$.

EXAMPLES 7. Let $ V$ be the subspace spanned by $\mathbf{v}_1 = \begin{bmatrix}
3 \\
6 \\
2
\end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}$. Determine whether $\mathbf{x} = \begin{bmatrix}
3 \\
12 \\
7
\end{bmatrix}$ is in $ V$. If so, find the unique representation by $ \mathbf{v}_1$ and $ \mathbf{v}_2$.


© TTU Mathematics