e-Mathematics > Matrix Algebra

Null Space

Null space. Let $ A$ be an $ m\times n$-matrix. Suppose that the homogeneous equation  $ A\mathbf{x} = \mathbf{0}$ has nontrivial solutions. Since general solutions are expressed in the parametric vector form, the collection of general solutions

$\displaystyle \mathrm{null}\,A =
\{\mathbf{x} = t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k:
t_1,\ldots,t_k\in\mathbb{R}\}.
$

becomes a subspace spanned by $ \mathbf{v}_1, \ldots, \mathbf{v}_k$ in $ \mathbb{R}^n$, and is called the null space of $ A$. When the homogeneous equation  $ A\mathbf{x} = \mathbf{0}$ has no nontrivial solutions, we write $\mathrm{null} A = \{\mathbf{0}\}$.

EXAMPLE 3. Find a basis for the null space of the matrix

$\displaystyle A = \begin{bmatrix}
-3 & 6 &-1 & 1 &-7 \\
1 &-2 & 2 & 3 &-1 \\
2 &-4 & 5 & 8 &-4
\end{bmatrix}
$

Matlab/Octave. The function null(A) returns a matrix  $[\mathbf{v}_1,\ldots,\mathbf{v}_k]$ containing column vector $ \mathbf{v}_i$'s which are a basis of the null space of $ A$. The choices of basis vectors  $ \mathbf{v}_1, \ldots, \mathbf{v}_k$ are not unique. Matlab/Octave produces a orthonormal basis which is not obtained from the parametric vector form by solving the homogeneous equation $ A\mathbf{x} = \mathbf{0}$.

Dimension of null space. If the column vectors  $ \mathbf{v}, \ldots, \mathbf{v}_k$ are constructed from an REF, then it is easily observed that they are linearly independent. Therefore, the collection $ \{\mathbf{v}, \ldots, \mathbf{v}_k\}$ becomes a basis of the null space of $ A$. This implies that the number of free variables in the matrix equation $ A\mathbf{x} = \mathbf{0}$ determines $ \dim$null$ A$. The rank of $ A$, denoted by $\mathrm{rank}\,A$, is identified as the number of pivot columns in $ A$. Thus, we obtain

$\displaystyle \dim(\mathrm{null}\,A) = n\, - \mathrm{rank}\,A
$

if $ A$ is an $ m\times n$-matrix.


© TTU Mathematics